![]() Procedure, system and computer program to determine the porosity of a flexible porous structure when
专利摘要:
Procedure, system and computer program to determine the porosity of a flexible porous structure when subjected to deformation. The method comprises performing the following steps by processing data representative of the flexible porous structure: - obtaining reference porosity values of at least one reference region (cu-r) of the flexible porous structure in a reference configuration; y - calculating the porosity of at least one deformed region (cu-d) of the flexible porous structure that corresponds to said reference region (cu-r) but for a deformed configuration different from the reference one, from the values of reference porosity and at least one calculation function that defines how a covered surface changes, and/or a variable associated therewith, with deformation. Both the system and the computer program are adapted to implement the method of the invention. (Machine-translation by Google Translate, not legally binding) 公开号:ES2578523A2 申请号:ES201530096 申请日:2015-01-26 公开日:2016-07-27 发明作者:Luis Serra Del Molino;Ignacio LARRABIDE FERNANDEZ;Héctor FERNÁNDEZ MARTÍNEZ 申请人:Galgo Medical Sl; IPC主号:
专利说明:
5 10 fifteen twenty 25 30 35 DESCRIPTION Procedure, system and computer program to determine the porosity of a flexible porous structure when subjected to deformation Technology Sector The present invention concerns, in a first aspect, a method for determining the porosity of a flexible porous structure when subjected to deformation, by processing data representative of the flexible porous structure. In a second aspect, the present invention concerns a system for determining the porosity of a flexible porous structure when subjected to deformation, by implementing an algorithm that carries out the process steps of the first aspect of the invention. A third aspect of the invention concerns a computer program that implements the steps of the procedure of the first aspect of the invention. In a non-limiting manner, the present invention is particularly applicable to the determination of the porosity of a flexible porous structure of tubular shape, especially of a stent. State of the prior art In general, the term stent, or "stent", is a medical anglicism commonly used to designate a cannula or a cylindrical or tubular shaped device for endoluminal use, usually endovascular, which is placed inside an anatomical structure or body duct to keep it permeable or prevent its collapse after dilatation, de-obstruction or surgical release A stent is typically implanted in a blood vessel at the site of an endoluminal stenosis or aneurysm, that is, by means of so-called "minimally invasive techniques", in which the stent is contained in a radially compressed configuration by a sheath or catheter and is supplied by a stent application device or "introducer" at the required location. The introducer can enter the body from an access point outside the same, such as through the patient's skin, or through a cutting technique in which the blood vessel is exposed to me God minor surgical. 5 10 fifteen twenty 25 30 35 As used herein, the term "stent" also refers to grafts, stent grafts, vena cava filters, expandable structures and similar implantable medical devices, which are radially expandable endoproses. They are usually intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. The stents can be implanted in various cavities or vessels in the body, such as in the vascular system, the urinary tract, bile ducts, among others. Such stents can be used to strengthen the blood vessels and to avoid restenosis followed by angioplasty in the vascular system. The stents can be self-expanding, such as the memory stents of nitinol form; furthermore, they can be mechanically expandable, such as an expandable balloon stent; or they can be expandable hybrids. The use of endoluminal stents is very common in different areas of medicine and veterinary medicine. There are different designs of stents for endoluminal insertion in blood vessels and other lumens to prevent or reverse their occlusion. In general, there are three basic categories of stent devices, namely: - heat expandable devices, - expandable balloon devices, and - self-expanding devices. Self-expanding stent-type devices that, optionally, have the ability to expand by heat, are inserted into a vessel inside the body in radially compressed form and mechanically move to a radially expanded position. Once the stent is placed in the desired position in the blood vessel, it expands radially by exerting outward pressure on the inner surface of the wall of the body vessel in which it has been placed. On the other hand, there are braided stents and unbraided stents. Braided stents are made by braiding (interlacing) threads of a thin metallic material according to different braiding patterns. A methodology for braiding stents is described in US Patent US6083257A. Depending on the number of threads, the braiding angulation, the nominal radius, the nominal length and the braiding pattern used, the 5 10 fifteen twenty 25 30 35 Mechanical properties and the density of the resulting stent mesh can vary considerably. Stents are frequently used for the treatment of intracranial aneurysms (AI), a sector in which there are different types of braided stents. One such type is known as the "Flow Deviator" (FD), which is densely braided and placed longitudinally along the vessel affected by the aneurysm and covering the neck of the aneurysm. braided thick braided stents are also used as scaffolding for the protection of the neck of the AI after the placement of an endovascular spiral ("coil"), as disclosed in US Patent US6010468A. The stents are placed in the desired place by a catheter, in image-guided operations, typically with X-ray imaging, the interventionist with the help of a contrast marker that highlights the localization of the lumen of the vessel and, where appropriate, of the aneurysm to be treated. In the case of aneurysms, the catheter is normally inserted into the body by arteries, for example the illaca artery, and is led to the aneurysm location by a neuro-interventional radiologist. Said radiologist will select the position in which the distal side of the stent is placed and will progressively unsheathe the stent until it is completely released in the treated vessel. The stents present the difficulty that the final porosity of the stent is not known a priori when it is placed inside the body and whose value depends both on the amount of flow that enters the aneurysm to be treated and on adjacent vessels that are covered by the stent. The porosity of a stent when placed inside a vessel can be approximated assuming that the stent is released in a straight vessel and of constant radius. This calculation consists in determining the area of the outer wall of the cylinder that generates the stent, based on its radius and its length, and the area of metal that covers said cylinder, based on the number of threads, the thickness of each thread, its length and the number of crossings between threads on the surface of the stent. This procedure provides little precise approximations of the porosity that the stent will have once inserted into the patient's vasculature, given that, in general, the vessels are heterogeneous tubular structures both in radius and in their three-dimensional morphology, presenting curvatures and torsions. 5 10 fifteen twenty 25 30 35 When a stent is outside a boundary structure, such as a vessel, as mentioned above, it adopts its maximum radius and minimum length in the absence of tensions. However, if said stent is placed inside a vessel with a smaller radius than the one outside a bounded structure, the walls of the vessel limit the radial expansion of the stent, forcing the device to expand longitudinally until a situation is achieved. of equilibrium This causes the stent in the vessel to be longer than in the air. This, in addition to being deployed in a curved tubular structure causes the porosity to depend on the point of the surface of the stent on which it is measured. Therefore, measuring the porosity of said device before placement does not provide realistic values of the behavior of the stent once inserted. The interventionist does not have the tools to estimate a priori the porosity of the stent once placed inside the patient. In the case of intracranial aneurysms, the variation in the density of the stent mesh, as a result of the different degrees of expansion and curvature to which the stent is subjected, causes the effect of the device on the internal blood flow of aneurysm is difficult to predict. For this reason, there is a need to have a tool that allows to accurately predict the final porosity of a stent once placed inside the body. There is a history that describes procedures for modeling stents. Deformable models have been used to simulate the behavior of a stent when placed inside the lumen of a vessel (Larrabide, I. and others "Fast virtual deployment of selfexpandable stents: method and in vitro evaluation for intracranial aneurysmal stenting.", Medical image analysis, 2012, 16 (3), 721-730) However, this procedure does not allow to predict with the porosity of the stent, since it does not take into account its longitudinal deformation. Other procedures based on the mechanical deformation of a cylinder-like structure have also been proposed (Cebral, JR and Lohner, R. "Efficient simulation of blood flow past complex endovascular devices using adaptive embedding technique" IEEE Transactions on Medical Imaging, 2005, 24 (4), 468-476), but neither are they able to predict the change in the porosity of the stent. Recently, a procedure has been disclosed, based on the use of finite elements and a detailed description of the braiding pattern, which allows a more precise modeling of the mechanical behavior of the stent type device (Ma, D. and others "Computer modeling of deployment and mechanical expansion of neurovascular flow 5 10 fifteen twenty 25 30 35 diverter in patient-specific intracranial aneurysms ”Journal of biomechanics, 2012, 1-8). This procedure is considerably accurate when modeling the behavior of a stent, but obtaining the models is extremely complex and computationally expensive. Other procedures based on obtaining images of the lumens of the vessels to be treated and modeling for the determination of the most suitable stent are those disclosed in International Patent Applications WO2006 / 093776 and WO2011 / 038044 and the Patent Application in United States US2007 / 0135707, although none of them describe its utilization to determine the porosity of the stent. International Patent Application WO2006 / 093776 discloses a modeling procedure of stents based on the use of an ultrasound imaging system for obtaining images of blood vessels, the detection of defects in said vessels and the use of said images to perform graphic simulations with different stents to check if the length and position are suitable. International Patent Application WO2011 / 038044, for its part, discloses an automated procedure to simulate the length and position of stents based on obtaining images of the lumen of the blood vessel by means of an optical coherence tomograph. From the images obtained, a three-dimensional reconstruction of the contours of the lumen of the vessel is performed, data related to the diameter of the vessel and the blood velocity, pressure and resistance are obtained to finally simulate and optimize the length and / or position of the stent. Finally, the US patent application US2007 / 0135707 discloses the obtaining of three-dimensional images with which to build a model of the vessel to be treated to detect the lesion and its characteristics and simulate the stent to be used and the position in which it will be placed . The present inventors do not know of any procedure or system that allows determining the porosity of a stent or any other kind of flexible porous structure, tubular or not, when subjected to deformation, by processing representative data of the flexible porous structure, it is say without being able to check directly on the flexible porous structure that porosity has, for example because the structure is 5 10 fifteen twenty 25 30 35 porous arranged in an inaccessible place, as is the case of a stent implanted inside the human body. There is, therefore, the need to offer a solution to the objective technical problem related to how to determine the porosity of a flexible porous structure when it is subjected to deformation, by processing representative data thereof. Explanation of the invention The present invention constitutes, in its different aspects, such a solution to the above mentioned objective technical problem. In a first aspect, the present invention concerns a method for determining the porosity of a flexible porous structure when subjected to deformation, which comprises performing the following steps by processing representative data of said flexible porous structure, such as a hollow structure. formed by threads, braided or non-braided: a) generate an Fs function that defines how at least a part of the flexible porous structure changes, given its coordinates, when subjected to one or more geometric deformations; b) generate a function Fp that defines how a covered surface changes, and / or a variable associated therewith, for at least a part of the flexible porous structure, corresponding to a relative position of the threads on the surface of the structure flexible porous, when subjected to one or more changes of form; c) obtaining a tubular representation of the flexible porous structure in a reference configuration with known porosity values and obtaining a tubular representation of the flexible porous structure in a deformed configuration, different from said reference configuration; d) dividing the surface of the flexible porous structure for the deformed configuration into a set of CU-D regions of known area; e) calculate, by means of the function Fs, at least one reference region CU-R of the flexible porous structure in the reference configuration, wherein the reference region CU-R corresponds to each of the deformed regions CU-D ; f) calculate the surface area covered in the CU-R reference region taking into account the known porosity values of the reference configuration in the CU-R reference region; 5 10 fifteen twenty 25 30 35 g) calculate the surface covered in the deformed regions CU-D using the function Fp; Y h) calculate the porosity of the deformed regions CU-D from the covered area calculated in g) and the total area of the deformed region CU-D. It should be noted that the Fp function is a surface change function covered by the flexible porous structure, which is directly linked to the porosity. The aforementioned representative data of the flexible porous structure to be processed, form respective three-dimensional representations of the flexible porous structure for each of the configurations: the reference and the deformed. As regards the aforementioned variable associated to the covered surface, depending on the example of realization, this is relative to the degree of occupation of the material that forms the flexible porous structure or to the degree of interstitial space, or free space of the material that It forms the flexible porous structure. The function Fs defines how said part of the flexible porous structure changes in shape in one or more of its dimensions that affect the porosity. According to a variant of the proposed procedure, steps g) and h) comprise calculating the degree of interstitial space, or free space of the material that forms the flexible porous structure, from said degree of occupancy, and from said degree of space interstitial perform said porosity calculation by performing the ratio between interstitial space and total space of the deformed region CU-D. In general, both the parts of the flexible porous structure of steps a) and b) and the deformed regions CU-D and reference CU-R are area elements on a perimeter surface of the flexible porous structure (i.e. a delimited surface by two parallel section planes of the flexible porous structure), although, less preferably, volume elements may be used instead of area elements. Preferably, the flexible porous structure is tubular, such as a stent or any other kind of flexible porous tubular structure, such as an inserted porous structure or covering a conduit or tube installed in a location of difficult access or 5 10 fifteen twenty 25 30 35 very restricted access, such as the case, for example, of a polluting or toxic area, such as radioactive (such as the case of a nuclear installation). However, it should be noted that the present invention is not limited to any kind of flexible porous structure in particular, but encompasses any flexible porous structure, tubular or not, of any shape and composition that, for whatever reason, does not allow or it is not advisable to determine its porosity by direct visual inspection, so it must be determined based on the processing of representative data. Such reasons are, for example, those mentioned above, that is to say that the structure is implanted in the human body or located in a polluting or toxic area, or of another Indole, as would be the case of micrometric structures whose inspection, even by Microscopy techniques, it is difficult when subjected to deformation. In the case where the flexible porous structure is a stent, this is, in general, of the aforementioned self-expanding stent-type devices that, optionally, have the capacity to expand by heat, which are inserted into a vessel within the body in radially compressed shape and mechanically move to a radially expanded position. The present invention is applicable to both braided and unbraided stents, provided that the stent changes its porosity when its spatial configuration varies. In general, in the case where the flexible porous structure is tubular, said perimeter surface is the outer perimeter surface of the flexible porous tubular structure. The aforementioned function Fs defines, according to an example of preferred realization, how the surface of the flexible porous structure changes when it is subjected to one or more geometric deformations, that is, starting from CU-D, giving rise to CU-R. As regards the function Fp, according to a preferred embodiment, it defines how the covered surface and / or the aforementioned variable associated with it changes for a surface element of the flexible porous structure, when subjected to one or more changes of shape, that is, starting from the surface covered in CU-R giving rise to the surface covered in CU-D. 5 10 fifteen twenty 25 30 35 Preferably, in the process proposed by the first aspect of the invention the deformed regions CU-D do not overlap each other. According to an example of realization, the deformed regions CU-D completely occupy the perimeter surface of the flexible porous structure, the method comprising dividing the perimeter surface into said deformed regions CU-D prior to step d). The procedure proposed by the first aspect of the present invention comprises processing the various porosity values obtained in step h) to perform one or more of the following actions, in accordance with some examples of embodiment: - determine the spatial distribution of the porosity by the flexible porous structure; - obtaining a porosity value that combines at least several of said porosity values, for an area of the flexible porous structure that encompasses several deformed regions CU-D; Y - visually represent on a three-dimensional model of the flexible porous structure the spatial distribution of the porosity for individual CU-D deformed regions and / or groups of CU-D deformed regions. According to an embodiment example, the reference configuration corresponds to a situation in which the flexible porous structure is released in a medium in which it is not subject to external stresses that deform it. For an alternative embodiment, the reference configuration corresponds to a situation in which the flexible porous structure is deformed but with a reference deformation that is different from that of the deformed configuration. In the case where the flexible porous structure is tubular, according to a variant of said alternative embodiment, said reference deformation is a deformation that keeps the flexible porous tubular structure straight and with a uniform radius along full length Other kinds of reference deformations are also possible for other embodiments, such as those that make the flexible porous structure adopt a curved shape, such as a toroid. 5 10 fifteen twenty 25 30 35 As regards the deformed configuration, according to an example of realization, for such a deformed configuration the flexible porous structure adopts a heterogeneous three-dimensional radius and morphology, wherein said heterogeneous three-dimensional morphology includes at least one curvature and / or at least a twist. According to an example of realization, in said deformed configuration the flexible porous structure adopts a conical shape. According to an example of realization, the data that make up the aforementioned three-dimensional representations are obtained by simulation. Alternatively, the data that make up the three-dimensional representations are obtained directly on a real flexible porous structure placed covering an outer surface of an element, solid or hollow, or an inner surface delimiting a hollow part of an element. When such an element is a tube (such as a blood vessel), the said hollow part is the one delimited by the inner wall of the tube, the flexible porous structure being able to be arranged, in this case tubular, covering said tube or attached to the inner wall of the same. According to an example of realization, the method comprises carrying out the calculation of the porosity for several deformed spatial configurations, with different deformations, corresponding to several respective positions adopted by the flexible porous structure in said simulation or in relation to said element. In general, the reference porosity values of the CU-R reference region are known (for example provided by the manufacturer of the flexible porous structure) and are registered in memory, where the method comprises performing said obtaining of said values of reference porosity of said CU-R reference region by accessing them in said report. For the most common case, in which the porosity of the flexible porous structure is uniform for the entire structure, the aforementioned reference porosity values are relative to the entire structure, not only to said CU-R reference region. In the case where such reference porosity values are not known in principle, the aforementioned obtaining thereof is carried out by determining them by 5 10 fifteen twenty 25 30 35 any known method, such as from a direct visual inspection of the flexible porous structure in its reference position. In a preferred embodiment the process of the present invention is used in the medical or veterinary field for the prediction of the porosity of stents when said stents are placed inside living bodies. The process of the present invention can be carried out with the help of one or more computer programs, that is, as a computer implemented procedure. In a second aspect, the present invention concerns a system for determining the porosity of a flexible porous structure when subjected to deformation, comprising data processing means with access to reference porosity values of at least one reference region CU-R of the flexible porous structure in a reference configuration, and that implement an algorithm for the processing of representative data of said flexible porous structure for the calculation of the porosity according to the procedure of the first aspect. A third aspect of the present invention concerns a computer program that includes code instructions that when executed in a computer implement the steps of the first aspect procedure. According to an example of realization, the system comprises: - computing means that include said processing means; Y - visualization means (such as a screen) configured to, under the control of said computing means, show a three-dimensional representation of the flexible porous structure for the deformed configuration with the spatial distribution of the porosity calculated for individual CU-D deformed regions and / or clusters of deformed regions CU-D. The computation means are configured to perform said porosity calculation for several deformed configurations, with different deformations, corresponding to several respective positions taken by the flexible porous structure, and to control the visualization means to show a three-dimensional representation. of the flexible porous structure for said deformed configurations with their respective spatial distributions of the porosity for regions 5 10 fifteen twenty 25 30 35 deformed individual CU-D and / or clusters of deformed regions CU-D. It is thus allowed that, in the case where the flexible porous structure is a stent, prior to its implantation in, for example, a blood vessel, the surgeon can check how the distribution of the porosity for different positions of the stent varies. In relation to the blood vessel, to choose the most suitable for the implant. In this document, the terms "vascular structure", "vessel", "vessels" refer to arteries, arterioles, veins, intestine, rectum and any other tubular type structure present in the human or animal body, which is susceptible to be treated with stents.In this document, the terms "stent", "stent type device" refer to braided, non-braided and equivalent stents.In addition, the present invention encompasses both constant radius (cylindrical) and stent stents. non-constant radius (conics, conical / cylindrical combinations, among others). For a homogeneous expansion of a braided stent it is possible to relate the angle of entanglement for different radii of expansion with the porosity of the stent, which in this situation will be constant throughout its surface. This allows an experimental validation of the procedure proposed by the present invention. Once the final porosity of the stent is obtained for each position, it can be represented on the three-dimensional representation of the stent by means of a color code (or other kind of code) associated with the range of values, between 0 and 1, of the porosity. Said color code can be obtained by any of the methods known in the state of the art. An additional advantage of the process of the present invention is that it allows to identify the regions in which the stent has zero porosity, blocking the circulation through the mesh of the stent. Such regions may present risks to the patient such as, in the case of blood flow diverters, the lack of irrigation to regions affected by collateral branches. Brief description of the drawings The foregoing and other advantages and characteristics will be more fully understood from the following detailed description of some examples of realization with reference to the attached drawings, which should be taken by way of illustration and not limitation, in which: 5 10 fifteen twenty 25 30 35 Figure 1 shows, in perspective, a stent released in the air that adopts a tubular structure (a), as well as a view of a cross section of the same (b) and a detail of the interlacing (c). Figure 2 shows, on the left, the detail of the view (c) of Figure 1, and, on the right, an enlarged view of part of it corresponding to the cross between two threads of the stent, in which it is observed the difference in surface area covered in two crossing positions. Figure 3 shows, on its left, the development of a stent cut along its length and extended on a plane and, on its right, a detail of the structure and the surface covered by a wire element that joins two crosses . Figure 4 corresponds to a detail of a stent in a deformed configuration when it is implanted in a body vessel, left view, and of the same stent deployed in a position or reference configuration, right view. Figure 5 is a graph showing the ratio of porosity change for each area element of the stent, according to Example 4, which will be described in the following section. Detailed description of some realization examples As described hereinafter, the present inventors have developed a procedure for determining the porosity and distribution thereof for a flexible porous structure. This procedure allows to determine with high accuracy the final porosity and its distribution and spatial variation for a stent based on the deformation with respect to a position or configuration of reference. In this section, the term "reference radius" refers to the radius adopted by the stent in a reference configuration and expressed as a function of some of the design variables, or other characteristic of the stent, in said reference configuration, and the term "reference length" refers to the length adopted by the stent in the reference position. Therefore, the stent adopts the "reference length" when it has its "reference radius". This section will focus on the description of the procedure for the case where the flexible porous structure is a stent placed or placed in a vascular structure, and the CU-R and CU-D regions are area elements, using the term CU-D To refer to 5 10 fifteen twenty 25 30 35 any element on the surface of the stent once implanted, and the term CU-R to refer to the element equivalent to CU-D in the reference position or configuration. In this section, each of the different angles of the stent threads with respect to their longitudinal direction, surface covered to the surface covered by the threads of the stent, free area to the surface not covered by the threads is called the interlacing angle. of the stent, and porosity to the relationship between free area ratio for a given total area on the surface of the stent. As described in a previous section, the process of the present invention is based on the analysis of the local deformation of the structure of the stent once placed. This calculation requires the definition of a relation of the change of area of the stent in function of the change of its geometric configuration, relation which is defined by the aforementioned function Fs. It is also necessary to define a function that describes how the covered surface (or directly porosity) on the surface of the stent is modified by deforming said surface, which is carried out by the function Fp, described in a previous section. The function that determines the change of total area of the stent with the variations in its geometry is determined in two directions that define that transformation between surfaces, that is: Fs = Fs1 + Fs2. On the one hand, in the cross-section of the stent, Fs1, the change in the total area of the stent is defined by the change in its perimeter due to radial expansion. For deformations of the stent without circular symmetry, the transformation is defined by the ratio between the arc length in the reference position and the arc length once the stent adapts to the surface on which it is deployed. On the other hand, in the longitudinal direction, Fs2, the change in area is determined by the change in the length of the stent by expanding in the tubular structure that limits it. This function can be determined with different methodologies. One way, with constant value throughout the entire stent, is to define this function as the ratio between the length in the measurement position and the length in the reference position. Another way can be attending to the different degrees of expansion that the stent undergoes depending on its position in the vessel as detailed in patent ES2459244B1. The greater the degree of detail with the 5 10 fifteen twenty 25 30 35 If this function is defined, the greater the approximation obtained in the result with respect to the real case. The function that defines the change in the surface covered with respect to deformations in the surface of the stent, Fp, can be defined by several methods. This function can be determined empirically by measuring the area of the stent and the amount of thread visible when deploying the device in various straight cylinders of variable radius. In an analytical way it can be defined by calculating the variation of the surface covered in the stent. For this a distribution is assumed for the threads on the surface and it is calculated, for said distribution, how the superimposed surface varies between pairs of threads given different stent diameters. In each case, the surface covered in the stent is the surface that each thread occupies multiplied by the number of threads minus the surface of the wire superimposed on the crosses. Another way to extract this function in an analytical way is to define an area element in the stent such that, under rigid transformations of this element, the surface of the stent can be covered. The calculation of the covered surface change function is determined by deforming the surface element and determining how its covered surface is adapted to the new configuration. Once the functions Fs and Fp have been determined, according to an example of realization, the method of the present invention for determining the porosity of a stent when placed in a 3D structure comprises the following steps: E1. Obtain a tubular representation of the stent in the reference position (20 in Figure 4) with known porosity values, or reference porosity. E2 Obtain a tubular representation of the stent in its deployed study position (21 in Figure 4). E3 Divide the surface of the stent into a set of area elements CU-D such that they cover their entire surface and do not overlap (CU-D: element 23 in Figure 4). E4 Calculate CU-R (22 in Figure 4), that is, its shape, in the R reference configuration, using Fs (step 24 in Figure 4), where CU-R is equivalent to CU-D. E5. Calculate the surface area covered in the CU-R element given the reference porosity in the CU-R position. E6 Calculate the surface covered in CU-D from the Fp function that relates the areas covered in CU-D and CU-R (step 25 in Figure 4). 5 10 fifteen twenty 25 30 35 E7 Calculate the porosity in the CU-D element as the ratio between the uncovered surface and the total area of CU-D; E8 Repeat steps 4), 5), 6) and 7) for all CU-Ds. Some of the previous steps can be ignored, for another example of realization, as described in a previous section, in particular when it is not necessary to first determine the covered surface for porosity calculation. Specifically, for such an embodiment, the function Fp defines how the porosity of the flexible porous structure changes, and therefore steps E5 and E6 are not necessary, and are replaced by a single stage comprising calculating the porosity of CU- D directly using the function Fp and the reference porosity values of CU-R. In Figures 1 to 4 different representations of the stent and parts thereof are shown, in a more or less schematic way. In particular, in Figure 1 the stent is shown in perspective (a), formed by a series of interwoven threads, a cross section of the stent (b) and an enlarged portion thereof with a detail of the interlacing of the threads the stent ( C). The figure shows the length of the stent -1-, the diameter -2-, the braiding angle -3-, the length between two crosses of the stent -4-, the longitudinal and transverse projection, along the perimeter, of the distance between crosses -5- and -6-, the distance between crosses along the perimeter -7- and the thickness of the thread -8-. The detail of the view (c) of Figure 1 is also represented in Figure 2 (left view) along with an enlargement thereof (right view) that illustrates the crossing between two wires and how their area changes when subjected to the stent to a deformation. The figure details: braiding angle -3-, length between two crosses of the stent -4-, longitudinal and transverse projection, along the perimeter, of the distance between crosses -5- and -6-, distance between crosses along the perimeter -7- and thread thickness -8-, the crossing angle when the threads are perpendicular -17-, the crossing angles for an arbitrary position -15 and -16- (and its complementary -18- ), ace! as the length of the overlap zone for an arbitrary position -14-. The development of a stent such as that of Figure 1 is illustrated in the left view of Figure 3, which, to its right, shows a detail of the structure and the surface covered by a wire element that joins two crosses of the stent . The figure shows the length of the stent - 5 10 fifteen twenty 25 30 35 1-, the length of the perimeter -19-, the thickness of the wire -8-, the crossing angles, along the braid and its complementary, -3- and -9-, the areas not occupied by metal -10- and -11-, two dimensions indicative of the thread measurements -12- and -13- and the length of thread between two crosses -4-. Finally, and in a more schematic way (since the threads of the stent are not illustrated), Figure 4 shows, in its left view, the stent inserted in a body vessel -26-, adopting a deformed configuration -21-, and, in its right view, the stent in a reference configuration -20- in which, in this case, the stent is deployed adopting a cylindrical shape. In the figure, in the deformed stent -21-, a deformed region CU-D of the area of the selected stent -23- has been indicated, and, in the stent in the reference configuration -20-, the corresponding region in the position reference, or reference region CU-R -22-, as! as the schematic representation of the steps to determine the calculation of porosity in CU-D, determine CU-R from the CU-D area using Fs -24- (step E4), and determine the amount of metal occupied in CU -D once known in CU-R through Fp -25- (step E6). In the process of the present invention, the representation of the stent and advantageously of the vessel where it will be placed, is provided in the form of three-dimensional surfaces, which can be obtained by any method known in the art, for example, by image segmentation of an angiographic image (Antiga, L. et al. "An image-based 5 modeling Framework for patient-specific computational hemodynamics”, Medical and biological engineering and computing, 2008, 46 (11), 1097-1112) and subsequent surface reconstruction (Lorensen, WE and Cline, HE "Marching Cubes: A high resolution 3D Surface construction algorithm”, Computer Graphics, 1987, 21, 4). The three-dimensional surfaces of the structure of the stent and the vessel can be represented by polygonal meshes, in which the resolution can be adjusted to obtain the relevant information of its morphology. As mentioned above, these techniques are known in the literature, and any of them can be used as long as it allows describing the morphology of the vessel in the region where the stent will be placed and the morphology of the stent itself. It is also possible to apply it to a three-dimensional simulation of the positioning of the stent, provided that its initial and final position in the vessel and its radii is known. With the procedure of the present invention it is not only possible to predict the porosity of a real or simulated stent once placed inside a vessel, but it is also possible to detect regions in which there could be a bad position of the stent in the walls 5 10 fifteen twenty 25 30 35 of the vascular structure, such as occlusion or total or partial coverage of branched vessels. With the use of the method of the present invention it is possible for the neuro-interventional radiologist to plan the treatment and know the porosity in each position of the stent before the realization of said treatment and, therefore, select the most suitable stent and the place in which that you should place said stent. In addition, the procedure of the present invention is implemented, according to the third aspect of the invention, by a computer program that allows the determination of the final porosity of the stent to be carried out with greater speed and precision. A series of examples of porosity determination, or associated variables, are described below, applying the procedure proposed by the present invention. Examples Example 1 Determination of the ratio of surface change covered by metal of the unit cell for a reference configuration. The selected configuration is one in which the stent is released without being subject to external stresses. In this position the unit cell can be defined as the entire stent for a single braiding angle. In this way it is possible to calculate the ratio of change of surface covered by metal with the total area from radially deforming the unit cell, the entire stent in this case, taking into account that the length of each thread is constant and that the amount of metal that covers the surface is equal to the surface that each thread occupies (length by thickness) minus the amount of metal that overlaps at the crossings. The total area occupied by the stent can be calculated from the diameter 0 and the length Lstent of the stent. A-total TV ■ (f) • Lstent The amount of metal in the crosses is calculated based on the area occupied by the rhombus in Figure 2 multiplied by the number of crosses in the stent, this relationship can be expressed as: 5 10 fifteen twenty 25 Acruces = (Nhilos / 2) • -v Lc without (or;) Lc = L ■ thing / I In this case Atotai represents the total area occupied by the surface of the stent, Acruces defines the area at the crossings between threads, Nhilos is the number of threads of the stent, Lstent defines the length of the stent, l is the thickness of each thread, a it is the angle between wires (i.e. double the angle -3- indicated in Figure 1) and Lc is the longitudinal component of the distance between two consecutive crosses, element -4- in Figure 3. The following table shows the values of the area that the surface of the stent occupies with respect to the metal area for a 48-wire stent with a diameter of 4 mm, length 16 mm, 0.04 mm thick in each thread and 1560 crosses and a distance between consecutive crossings along the 0.3611 wire, for different deformed positions of the stent, and therefore different angles to: Table 1 Total Area [mm2] Covered surface [mm2] 20.7931 20,6476 75.3745 38,3293 138.5351 41,4003 182.9858 42,2906 202.7232 42,5608 195.0818 42.4627 161.0934 41.9136 105.3486 40,2458 Example 2 Determination of the unit cell change ratio for a reference configuration. The rectangle that occupies the portion of thread that is between two consecutive crosses as shown in Figure 3 is selected as a unit cell. The rotation and translation of this pattern generates a complete stent with a single twisted angle for the 5 10 fifteen twenty 25 nominal position selected. The total area and the covered surface can be determined geometrically from the angle a / 2 generated by the stent with the longitudinal direction, indicated as -3- in Figure 3. 2 without -rltctal -L- * n ‘■ busy = L2 if not!) ~ (L ~ l without (ci!) 2 v without (or!) '2 The following table shows the surface covered by the stent with respect to the total area for a 48-wire stent with a diameter of 4 mm, length 16 mm, threads with a thickness of 0.04 mm and 1560 crosses with distance between crosses of 0.3611, for different deformed positions of the stent: Table 2 Total Area [mm2] Covered surface [mm2] 0.006664 0.006617 0,024158 0.012285 0.039808 0.013134 0.055772 0.013509 0,064203 0.013632 0.063963 0.013629 0.055085 0.013497 0.038767 0.013099 Example 3 Porosity calculation for a 48-wire stent with a diameter of 4 mm, length 16 mm, thread thickness of 0.04 mm, 1560 crosses and a homogeneous porosity of 0.79 in its nominal position, that is, in its reference configuration , is deployed in a homogeneous cylinder of 2 mm in diameter, in its deformed configuration. The stent adopts a length of 21.84 mm when adapted inside the homogeneous cylinder of 2 mm. The surface of the cylinder is divided into elements of 1 mm in the longitudinal direction and 1.26 mm on the perimeter. Therefore, the selected area element CU-D will have a surface area of 1.26 mm2. To calculate the element of 5 10 fifteen twenty 25 30 35 CU-R surface in the nominal configuration, that is in the reference one, the function Fs is calculated. For this, the area transformation in the perimeter direction and in the longitudinal direction is calculated. In the direction of the perimeter the transformation is given by the difference of arcs for two radii of 2 mm and 4 mm, that is, an element of arc of 1.26 mm over a radius of 2 mm corresponds to 2.52 mm of arc over a radius of 4 mm. The relation in the longitudinal direction is determined by the ratio between the lengths of the stent in its reference position and its final position, 16 mm versus 21.84 mm, so that a length of 1 mm in the stent in its final position corresponds to 0.73 mm in its reference position, so the corresponding area in the nominal position corresponds to 2.52 x 0.73 = 1.83 mm2. Therefore, known the porosity in the reference position, in this case 0.79, the surface covered in this position results from (1 - 0.79) x 1.26 = 0.38 mm2. The surface covered in the final position can be related to that of reference by calculating the variations of occupied metal area with the variations of total area shown in Tables 1 and 2. The total area of the stent in the deployed position and in the position of Reference can be calculated from its diameters and lengths. In this case it corresponds to 202 mm2 in the reference position and 138 mm2 in the deployed position. Taking into account the values of surface covered for each position, it is estimated that the variation of surface covered with the variation of total area (difference of the covered area divided by the difference of total area) is of the order of -1/50, which in This case is calculated as (41.4-42.6) / (202-138) = 0.01875, this is when the variation of the total area selected is one unit in positive, the covered area decreases 1/50 that amount. In the present case the variation of the total area is 1.26 - 1.83 = -0.62 mm2, so that the area covered in the unfolded position is 0.38 - 0.62 * 0.01875 = 0.368 mm2 giving rise to a porosity of (1-0.368 / 1.26) = 0.708. Example 4 Porosity calculation for a 48-wire stent with a diameter of 4 mm, length 16 mm, 0.04 mm thick in each thread and 1560 crosses and a homogeneous porosity in its nominal (reference) position of 0.79 when it is found deployed in a conical cylinder whose diameter varies from 4 mm to 1.5 mm. The stent has a length of 19.7 mm when adapted inside the conical cylinder, which implies a 23% change in length. The surface of the cylinder is divided into 5 10 fifteen twenty 25 30 35 1 mm area elements in the longitudinal direction and of the total perimeter in the direction of the perimeter. The ratio of change of length of the stent with the circumference can be estimated experimentally by deploying the stent on cylinders whose diameters vary from 4 mm to 1.5 mm, or analytically taking into account that the stent is a spring-type structure of known equation. In each 1 mm segment the same calculations are made as in the previous example, taking into account that in this case the variations of surface covered with the total area will be different for each segment of the cone of different radius that is taken. The porosity in each segment is calculated again from the difference in the area of the segment in the cone and the segment segment equivalent over the nominal position, as! as of the corresponding occupied areas. The porosity calculation of some of these segments is detailed below. First, the assumption is made that each 1 mm long element has a constant diameter within that order of magnitude (the variation of the diameter in each segment is of the order of 0.13 mm). Therefore the area of the stent is reconstructed by applying the concept of Riemann sum. On the other hand the variation of the diameter from the beginning, 4mm, to the end, 1.5mm, is established through a linear equation, ® = 4- (2.5 / 19.7) x, where x is a integer that takes values from 0 to 20. Finally, the length change can be calculated by applying the equation of the helix. A stent with 48 threads implies that in a perimeter where its threads intersect there are 24 crosses, which gives rise to 65 crosses in the longitudinal direction for a stent of 1560 crosses in total. Therefore, the number of turns of each thread along a length will be 65/48 = 1.35 turns per thread. The equation of the helix is expressed mathematically as: Lhilo = Lhelice + (n ■ 7T • 0) 2 Where n is the number of turns and Lhelice is the longitudinal dimension of the propeller, in this case the length of the stent. Therefore, for each segment of 1 mm and known diameter it is possible to calculate what its length will be when it occupies its nominal diameter), 4 mm, without more than applying the changes of length given by the equation of the propeller, note that the length of the Thread is constant for any diameter and length that the stent adopts and that can be calculated from the nominal position of helix length and known diameters. The first segment has a nominal radius of 4 mm, as there is no change in length associated with its diameter or the morphology to which it adapts, its porosity coincides with the nominal porosity. 5 10 fifteen twenty 25 30 35 The fourteenth segment of the stent in its position deployed in the conical cylinder has a diameter of 2.22 mm, which implies an area of 2.22 * pi * 1 = 6.97 mm2 over a segment of 1mm in length. In order to calculate the segment length when the stent is in its nominal position, or nominal length, the helix equation is applied as follows. First, and given that the length of the thread is constant, the equation is equalized for two positions of known diameter, in this case for a diameter of 4 mm (nominal position) for which Lhelice is equal to the nominal length of the stent , that is 16 mm, and for a diameter of 2.22 mm (unfolded position), for n = 1.35. So: 162 + (1.35 • n • 4) 2 = L2helice deployed + (1.35 'n • 2.22) 2 Where Lhelice deployed is the length of the propeller corresponding to the deployed position for a diameter of 2.22 mm. So: L propeller deployed (162 + (1.35 • n • 4) 2 - (1.35 • n • 2.22) 2) 0.5 = (162 + (1.35 • n) 2 * (42 - 2,222)) 0.5 Which gives a value for Lhelice deployed of 21.33 mm. Considering that the length of the propeller is reduced from 21.33 mm to 16 mm when passing from the deployed position to the nominal one, applying a rule of 3 a segment of 1 mm in length in its deployed position will be reduced to a segment of length nominal equal to (21.33 mm * 1 mm) / 16 mm, that is to say value equal to 0.74 mm, which corresponds to an area of 0.74 * 4 * n = 9.30 mm2, which for a nominal porosity of 0.79 assumes a covered area of (1-0.79) * 9.30 = 1.95 mm2. Assuming that the correction factor with the area is constant, equivalent to that calculated in Example 3, the surface covered in the fourteenth position will be 1.95+ (6.97-9.30) / 50 = 1.9 mm2, which results in a porosity of 1- (1.9 / 6.97) = 0.72. The porosity change ratio for each element of the stent inserted in the conical cylinder is shown in Figure 5, where for the distance of 19 mm indicated in the graph the stent is adapted to the portion of the 1.59 mm conical cylinder diameter. A person skilled in the art could introduce changes and modifications in the examples of realization described without departing from the scope of the invention as defined in the appended claims.
权利要求:
Claims (25) [1] 5 10 fifteen twenty 25 30 35 1. - Procedure for determining the porosity of a flexible porous structure when subjected to deformation, which comprises performing the following steps by processing representative data of said flexible porous structure, the flexible porous structure being a hollow structure formed by strands, braided or not braided: a) generate a function (Fs) that defines how at least a part of the flexible porous structure changes, given its coordinates, when subjected to one or more geometric deformations; b) generate a function (Fp) that defines how a covered surface changes, and / or a variable associated therewith, for at least a part of the flexible porous structure, corresponding to a relative position of the threads on the surface of the flexible porous structure, when subjected to one or more shape changes; c) obtaining a tubular representation of the flexible porous structure in a reference configuration with known porosity values and obtaining a tubular representation of the flexible porous structure in a deformed configuration, different from said reference configuration; d) divide the surface of the flexible porous structure into a set of deformed regions (CU-D); e) calculate, by function (Fs), at least one reference region (CU-R) of the flexible porous structure in the reference configuration, where the reference region (CU-R) corresponds to each of deformed regions (CU-D); f) calculate the area covered in the reference region (CU-R) taking into account the known porosity values of the reference configuration in the reference region (CU-R); g) calculate the area covered in the deformed regions (CU-D) using the function (Fp); Y h) calculate the porosity of the deformed regions (CU-D) from the covered area calculated in g) and the total area of CU-D, wherein said representative data of the flexible porous structure form respective three-dimensional representations of the flexible porous structure for each of the configurations: the reference and the deformed. [2] 2. - Procedure according to revindication 1, characterized in that said variable associated with the covered surface is relative to the degree of occupation of the material that forms the flexible porous structure. 5 10 fifteen twenty 25 30 [3] 3. - Method according to claim 1, characterized in that said variable associated with the covered surface is relative to the degree of interstitial space, or free space of the material that forms the flexible porous structure. [4] 4. - Method according to claim 1, characterized in that the function (Fs) defines how said part of the flexible porous structure changes in one or more of its dimensions that affect the porosity. [5] 5. - Method according to claim 1, characterized in that said step h) comprises calculating the degree of interstitial space, or free space of the material that forms the flexible porous structure, from said degree of occupation, and from said degree of space interstitial perform said calculation of the porosity by performing the ratio between interstitial space and total space of the deformed region (CU-D). [6] 6. - Method according to claim 1, characterized in that both said parts of the flexible porous structure and said deformed (CU-D) and reference regions (CU-R) are area elements on a perimeter surface of the flexible porous structure. [7] 7. - Method according to any one of the preceding claims, characterized in that said flexible porous structure is tubular. [8] 8. - Method according to claim 6 or 7, characterized in that the function (Fs) defines how the perimeter surface of the flexible porous structure changes in shape when subjected to one or more geometric deformations. [9] 9. - Method according to claim 5, 6 or 7, characterized in that the function (Fp) defines how the covered surface changes and / or said variable associated therewith for the perimeter surface of the flexible porous structure, when subjected to one or more changes of form. [10] 10. - Method according to claim 1, characterized in that the deformed regions (CU-D) do not overlap each other. [11] 11. - Method according to claim 6, characterized in that the deformed regions (CU-D) completely occupy said perimeter surface of the flexible porous structure, the method comprising dividing said perimeter surface into said deformed regions (CU-D) prior to stage d. [12] 12. - Method according to any one of claims 1 or 10 to 11, characterized in that it comprises processing the various porosity values obtained in step h) to perform at least one of the following actions: - determine the spatial distribution of the porosity by the flexible porous structure; 5 10 fifteen twenty 25 30 35 - obtaining a porosity value that combines at least several of said porosity values, for an area of the flexible porous structure that encompasses several deformed regions (CU-D); Y - visually represent on a three-dimensional model of the flexible porous structure the spatial distribution of the porosity for individual deformed regions (CU-D) and / or groups of deformed regions (CU-D). [13] 13. - Method according to any one of the preceding claims, characterized in that the reference configuration corresponds to a situation in which the flexible porous structure is released in a medium in which it is not subject to external stresses that deform it. [14] 14. - Method according to any one of claims 1 to 12, characterized in that the reference configuration corresponds to a situation in which the flexible porous structure is deformed but with a reference deformation that is different from that of said deformed configuration [15] 15. - Method according to claim 14, characterized in that said reference deformation is a deformation that keeps the flexible porous tubular structure straight and with a uniform radius along its entire length, wherein said flexible porous structure is tubular. [16] 16. - Method according to any one of the preceding claims, characterized in that the flexible porous structure adopts, for said deformed configuration, a heterogeneous three-dimensional radius and morphology, wherein said heterogeneous three-dimensional morphology includes at least one curvature and / or at least one twist . [17] 17. - Procedure according to claim 1, characterized in that the data that make up said three-dimensional representations are obtained by simulation. [18] 18. - Method according to claim 1, characterized in that the data that make up said three-dimensional representations are obtained directly on a real flexible porous structure placed covering an outer surface of an element, solid or hollow, or an inner surface delimiting a hollow region of an element. [19] 19. - Method according to claim 17 or 18, characterized in that it comprises carrying out said calculation of the porosity for several deformed spatial configurations, with different deformations, corresponding to several respective positions adopted by the flexible porous structure in said simulation or in relation to said element. [20] 20. - Method according to any one of the preceding claims, characterized in that said flexible porous structure is a stent. 5 10 fifteen twenty 25 [21] 21. - Method according to any one of the preceding claims, characterized in that in said deformed configuration the flexible porous structure adopts a conical shape. [22] 22. - Method according to any one of the preceding claims, characterized in that said known porosity values of the reference configuration are registered in memory, where the method comprises performing said obtaining of said porosity values of said reference region (CUR) accessing them in said memory. [23] 23. - System for determining the porosity of a flexible porous structure when subjected to deformation, comprising data processing means with access to reference porosity values of at least one reference region (CU-R) of the structure flexible porous in a reference configuration, and that implement an algorithm for the processing of data representative of said flexible porous structure for the calculation of the porosity according to the method of any one of claims 1 to 22. [24] 24. - System according to revindication 23, characterized in that it comprises: - computing means that include said processing means; Y - visualization means configured to, under the control of said computing means, show a three-dimensional representation of the flexible porous structure for the deformed configuration with the spatial distribution of the porosity calculated for individual deformed regions (CU-D) and / or clusters of deformed regions (CU-D). [25] 25. - Computer program that includes code instructions that when executed in a computer implement the steps of the method according to any one of claims 1 to 22. image 1 Figure 1 image2 Figure 2 image3 Figure 3 image4 image5
类似技术:
公开号 | 公开日 | 专利标题 ES2459244B1|2014-11-14|Procedure for determining the final length of stents before placement JP5487122B2|2014-05-07|Stent for use in biological tubular organs JP6083533B2|2017-02-22|Stent graft with marker and reinforcement and marker ring ES2892960T3|2022-02-07|Devices and methods for anatomical mapping for prosthetic implants ES2886029T3|2021-12-16|Methods for anatomical mapping of prosthetic implants JP2020192359A|2020-12-03|Stent device having reduced foreshortening and recoil and method of making the same Perrin et al.2016|Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts US20120310611A1|2012-12-06|System and method for simulating deployment configuration of an expandable device ES2578523B1|2017-12-28|Procedure, system and computer program to determine the porosity of a flexible porous structure when subjected to deformation US20200323592A1|2020-10-15|Method for determining the positioning in deployed position of an implantable medical device after expansion in a vascular structure JP6976323B2|2021-12-08|Manufacturing support method for embedded custom-made devices ES2854729T3|2021-09-22|Method and system for the detection of self-expanding endoprosthesis, or stent, absorbable intravascular CN111743625B|2021-09-28|Support type number matching method and device for intracranial aneurysm and support simulation display method Hoi et al.2006|Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography | and image-based computational fluid dynamics | analyses ES2874058T3|2021-11-04|Flexible stent Mühl-Benninghaus et al.2019|Preclinical evaluation of the Accero stent: flow remodelling effect on aneurysm, vessel reaction and side branch patency JP6278973B2|2018-02-14|Vascular implant with asymmetric stent spring JP6794361B2|2020-12-02|Visualization of end grafts by optical shape detection JPWO2017047569A1|2018-07-05|Stent and stent graft CN111754621A|2020-10-09|Stent expansion simulation display method after implantation into blood vessel, device, computer equipment and storage medium JP2018502646A5|2019-02-07| US20120109275A1|2012-05-03|Stent with radially asymmetric force distribution
同族专利:
公开号 | 公开日 ES2578523R1|2017-02-22| EP3252454A1|2017-12-06| US20180336310A1|2018-11-22| ES2578523B1|2017-12-28| US10521553B2|2019-12-31| WO2016120704A1|2016-08-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 GB9522332D0|1995-11-01|1996-01-03|Biocompatibles Ltd|Braided stent| US6010468A|1998-03-05|2000-01-04|The Discovery Group, Llc|Foot flexion device| US7892177B2|2005-02-28|2011-02-22|Scimed Life Systems, Inc.|Systems and methods for estimating the length and position of a stent to be applied within a patient| US20070021816A1|2005-07-21|2007-01-25|The Research Foundation Of State University Of New York|Stent vascular intervention device and methods for treating aneurysms| US7650179B2|2005-12-09|2010-01-19|Siemens Aktiengesellschaft|Computerized workflow method for stent planning and stenting procedure| EP2742858A3|2009-09-23|2014-09-03|Light-Lab Imaging Inc.|Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods| ES2459244B1|2013-10-31|2014-11-14|Galgo Medical, S.L.|Procedure for determining the final length of stents before placement|EP3791823A1|2019-09-13|2021-03-17|Siemens Healthcare GmbH|Expansion parameters of a stent with braided struts|
法律状态:
2017-12-28| FG2A| Definitive protection|Ref document number: 2578523 Country of ref document: ES Kind code of ref document: B1 Effective date: 20171228 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 ES201530096A|ES2578523B1|2015-01-26|2015-01-26|Procedure, system and computer program to determine the porosity of a flexible porous structure when subjected to deformation|ES201530096A| ES2578523B1|2015-01-26|2015-01-26|Procedure, system and computer program to determine the porosity of a flexible porous structure when subjected to deformation| EP16709952.2A| EP3252454A1|2015-01-26|2016-01-25|Method, system and computer program for determining the porosity of a flexible porous structure subjected to deformation| US15/545,902| US10521553B2|2015-01-26|2016-01-25|Method, system and computer program for determining the porosity of a flexible porous structure subjected to deformation| PCT/IB2016/000043| WO2016120704A1|2015-01-26|2016-01-25|Method, system and computer program for determining the porosity of a flexible porous structure subjected to deformation| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|